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Painlevé analysis is performed for the coupled system of nonlinear partial
differential equations consisting of the KdV equation and NLS equation initially
studied by Nishikawa. Various possibilities for the constants occurring in the
system are explored, paying attention to the integrability property. This equation
occurring in the field of plasma physics satisfies all the requirements of Painlevé
analysis and can be ascertained to be completely integrable, though no Lax pair
is known for it.

1. INTRODUCTION

One of the most frequently occurring equations in plasma physics is
the coupled system of nonlinear Schrodinger equation and KdV, considered
by Nishikawa (1974). Lax pair is not known for the system. So one does
not have any idea about the complete integrability of this system. On the
other hand, recently Conte (1988) suggested that it may be more fruitful to
make a Painlevé analysis for such a system, because there is no other avenue
for analyzing such a system. In a recent communication some important
results have been obtained for the coupled system of Boussinesq and
nonlinear Schrdodinger equations (Roy Chowdhury and Chanda, 1987),
which also does not possess a Lax pair. In this paper we analyze the
equations of Nishikawa from the viewpoint of Painlevé analysis following
Weiss (1984).

2. FORMULATION

The equations are written as
Wt Tup=0
—iX: T Xax T U =0 (1)
Uy e+ U + Bunx = (PX)
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The Painlevé analysis proceeds by assuming a Laurent expansion of the
nonlinear field variables over the solution manifold, ¢(x, t) =0. So we set

u= § up”™
U= EO P (2)

x=7Y x¢™"
Jj=0
Matching the leading terms in each of equations (1), we get
p=q=r=-2
whereas the coefficients of these terms yield
Up= “6¢i
YoXo=18%(B —2a)

From the terms next to leading order we get the following system matrix
T, whose determinant upon vanishing will yield an equation for the reson-
ance positions:

(3)

(m=2)(m—3)p+u, o
r= 0 Xo
=(m—4)buxo a(m—2)(m—3)(m—4)¢3+ Buo(m —4)d,
0
(m—2)(m—3)¢3+u, (4)
—Yo(m—4),

Using equation (3), we find that det T =0 leads to the equation
m(m+1)(m—4)(m-5)(m-6)[68~-a(m*—5m+12)]=0 (5)
So we get resonance at
m=0,-1,4,5,6,and m,, m, (6)
where m,, m, are

_Sax(24af—232%)'"?

1,2
2a

(7)
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Equation (3) already gives an indication that one of i, or y, is arbitrary
corresponding to m = 0. First we consider the simplest values of «, 8 which
will make m, , integral. Such a situation arises when a =8, and m,,=3, 2,

Ug= _6¢;2:, YoXo= ‘18‘1‘25?: (8)
On the other hand, for m=1,
u1=—30¢xx
8¢xx¢‘0 4’0x l'l’()
=——— 9
ST T 22 ? ©a)
_ 8duXo  Xox, I Xo:
===t R
o b 2 P

Proceeding with the situations m =2, 3, etc., we obtain the coefficients
recursively. For this we write down the general recursion relation among
the various coefficients obtained by equating similar power of ¢. These are

i[wm—Z,r + d’m—l‘bl(m _3)] + ¢’m—2,xx +2(m _3)
X d’m—l,x(ﬁx + !l/m—l(m '—3)¢xx + (m —2)(m _3) X l/’m(bi
+§ Un-ih =0 (9b)

~ X2, = Xm-1P:(m =3) F X+ (m = 2)(m = 3) xnp%
+ Y U, kb =0 (9¢)
Upoa,tUpap(im—4)y+ U, 5, + U 2dx(m—4)
[ Up s poex F3Up-z (M =8) A 3U,, 5, (m —4) s
+3Up-1,x(m=3)(m—4) ¢+ Up_o(m —4) $rxx +3U,,_y(m —3)
X (M =4)uprx + Up(m —2)(m —3)(m —4)$3]
+B/2};‘ [(Un—k-1Udx+ Upi X Up(m —4) ¢, ]

=% (l//m—1—kl//k)x+2’:, Ym—rXi(m —4) s (9d)

Then, for m =2,
Udo+ x2Up=H
Usxot x2Us=L (10)
= Ux(2¢:Uo) + (2dxx0)d2+ 2dutho)x2 = M
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where
H= _i(‘ll()t - ¢1¢I) - ¢0xx + 2¢1x¢x + ‘lfl(i)xx - U1¢’1

L= i(XOI —X1¢‘r) ~ Xoxx +2X1x¢x +X1¢xx - Ule
M= 2u0¢t + 2¢xuo+ 6¢xu0xx + 6u0x¢xx _6u1x¢3c

+ 2u0¢xxx - 6u1¢xd)xx - (“oul)x + ¢xu11> + (Xl'-/’o)x

+(¢’1X0)x_2¢xl/'1X1 (11)

In equation (10) the determinant of u,, ¥,, ¥, on the lhs vanishes. So all
of them are not determined.

m=3,
W P+ oty Uity = —(uzo + uols)
—iX1+ Xixx T U X1+ U X2 = (UsXo ™t UoXs)
Uoe — U T oy — OXT F [Ugrex =3Pl cxDx = 3Uy P — Uy D]
+32(ua140) + 201y —2x" 35 — 2 tyu1]

= (Yaxo+ X120+ YoX2)x — Dx(Psxo+ Yox1 + Yixa+ Yoxs) (12)

Again one can check that the same situation as m =2 is present and one
cannot determine all the coefficients (u5, 5, x5). It then becomes a simple
routine exercise to proceed up to m =6, and verify the arbitrariness of the
required number of coefficients. So we can ascertain that at least for 8 = v,
we can satisfy the Cauchy-Kowalevskya theorem and say that system (1)
is completely integrable. Let us now consider another situation for which
B =2v. In this case m;, m,=0, 5. The resonance positions at 0, 5 are
repeated twice, while others remain the same and the number of arbitrary
functions are thereby reduced. Equation (3) indicates that only one of the
coefficients (uq, Yo, Xo) is arbitrary. But a double resonance at m = 0 requires
the arbitrariness of at least two of these, which is not the case. A similar
situation takes place at m = 5. So in the case 8 =2 we can say that equation
(1) has a special Painlevé property.

3. DISCUSSION

In the above we have presented a Painlevé analysis for a coupled set
of nonlinear equation whose Lax pair is still not known. Surprisingly, the
set of equations conform to all the criterion of Cauchy-Kowalevskya.
Furthermore very recently it has been stressed that Painlevé analysis should
be performed not only for integrable systems, but also for non-integrable
ones. Lastly, an algebrogeometric technique has been developed by the
Russian School to integrate (i.e., to find periodic and multi-solitons) the
system of equation under consideration.
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